The nucleotide sequences of chloroplast 4.5 S rRNAs from four species of plants, celery (Apium graveoleus), barley (Hordeum vulgare), Chinese chive (Allium tuberosum) and dayflower (Commelina communis)

Cheng Zhen-Qi, Zhang Hong, Li Guo-Ya and Liu Xiao-Yang

Institute of Biophysics, Academia Sinica, Beijing, China

Received 28 January 1986

Four chloroplast 4.5 S rRNAs were isolated from the respective plant leaves by a simple method. The complete nucleotide sequences were determined using rapid gel sequencing techniques. The sequences are highly conserved among chloroplast 4.5 S rRNAs. The 4.5 S rRNAs of celery, Chinese chive and dayflower are 103 nucleotides long and that of barley 95 nucleotides long. The 7-nucleotide sequence from position 28–34 is absent in monocotyledon barley 4.5 S rRNA but is present in monocotyledon Chinese chive and dayflower.

Chloroplast RNA RNA sequencing Sequence homology Evolution Phylogenesis (Plant)

1. INTRODUCTION

Chloroplast 4.5 S rRNA is found not only in higher plants [1-12], but also lower plants [13]. Since the reports by Dyer and Bowman [1] and Whitfield et al. [3], 4.5 S rRNAs from a number of plants have been sequenced [6-13]. The nucleotide sequences of 4.5 S rRNAs are strongly conserved among themselves and homologous with the 3'-terminal region of prokaryotic 23 S rRNAs [12,17]. The structural homology suggests that there is some functional homology between 4.5 S rRNA and the 3'-terminal region of prokaryotic 23 S rRNA. The appearance of 4.5 S rRNA is interesting in plant molecular evolution and phylogenesis.

We have determined the nucleotide sequences of chloroplast 4.5 S rRNAs of celery, barley, Chinese chive and dayflower and compared the sequence homology.

2. MATERIALS AND METHODS

2.1. Materials

Plants were obtained from the local commune or grown in our laboratory. $[\gamma^{-32}P]ATP$ (5000 Ci/mmol) was purchased from the Radiochemical Centre (Amersham, England) or the Chinese Nuclear Research Centre, Beijing. Polynucleotide kinase, RNA ligase and RNase T_1 were purchased from the Biochemical Factory of the Institute of Biophysics, Academia Sinica, Beijing. RNase U_2 , RNase Phy M and RNase B. cereus were obtained from Pharmacia P-L Biochemicals. $[5'^{-32}P]pCp$ was prepared from Cp and $[\gamma^{-32}P]ATP$ by polynucleotide kinase reaction.

2.2. Purification of 4.5 S rRNA

Chloroplast 4.5 S rRNAs were prepared from young leaves primarily according to Wildeman and Nazar [6] with modifications. 500 g leaves were mixed with 500 ml of 0.3% SDS, 50 mM sodium acetate (pH 5.0), 0.14 M NaCl and 500 ml phenol saturated with distilled water and containing

0.08% hydroxyquinoline. The mixture was homogenized in a blender at maximum speed (20000 rpm) for 2 min. The homogenate was stirred at 50°C for 15 min and centrifuged at 6000 \times g at 4°C for 15 min to remove the debris. The aqueous phase was made 2 M with LiCl and stirred at room temperature for 20 min, then centrifuged to remove DNA, high- M_r RNA and part of the proteins. 2.5 vols ethanol were added and the preparation kept at -20°C overnight. The RNA precipitate was collected by centrifugation, washed with 70% cold ethanol and lyophilized. 4.5 S rRNA was purified using 8% polyacrylamide/7 M urea gel electrophoresis.

2.3. 5'- or 3'-end labeling

The 5'- or 3'-end of purified 4.5 S rRNA was labeled as in [14]. The 5'-end was labeled with polynucleotide kinase and $[\gamma^{-32}P]ATP$ without prior dephosphorylation and the 3'-end with RNA ligase and $[5'^{-32}P]pCp$. The end-labeled RNA was purified as in [6].

2.4. RNA sequence analysis

The nucleotide sequences were determined using the enzymatic method of Donis-Keller et al. [15] and the chemical method of Peattie [16]. Both 5'-and 3'-end-labeled RNA were used in enzymatic sequencing. 3'-end-labeled RNA was used in chemical sequencing. The 3'-terminal residue was identified by PEI-cellulose thin-layer chromatography after complete digestion of the end-labeled RNA with RNase T₂.

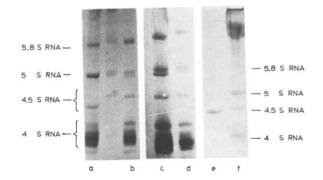


Fig.1. Separation of low- M_r RNAs from various plant leaves on 8% polyacrylamide gel. Bands were stained in toluidine blue. (a) Barley, (b,c) Chinese chive, (d) dayflower, (e) purified 4.5 S rRNA of celery, (f) celery.

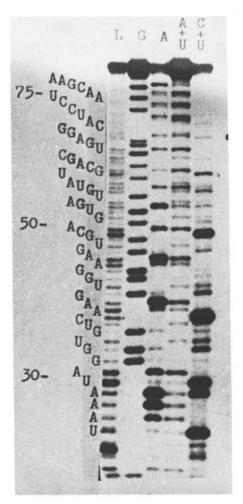


Fig.2. Autoradiograph of sequencing gel with 5'-end-labeled chloroplast 4.5 S rRNA of barley. The partial digests were obtained by incubation with RNase T_1 (G), RNase U_2 (A), RNase Phy M (A+U), RNase B. cereus (C+U), and alkali (L). Electrophoresis was carried out on a 20% polyacrylamide gel for 8 h at 1500 V. Numerals indicate residue numbers relative to the 5'-end.

3. RESULTS AND DISCUSSION

The 4 chloroplast 4.5 S rRNAs were purified from the 4 plant species by a simple method, hotphenol extraction.

The nucleotide sequences were determined as described by Peattie with 3'-end labeled 4.5 S rRNA and according to Donis-Keller with both 3'-and 5'-end labeled 4.5 S rRNA. The 4 nucleotide sequences from different plants have been deter-

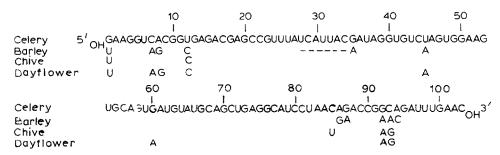


Fig. 3. Alignment of chloroplast 4.5 S rRNA sequence of celery, barley, Chinese chive and dayflower. Nucleotides identical to those found in celery chloroplast 4.5 S rRNA sequence are not shown. Bars denote gaps introduced to maximize homology.

mined. All are 103 nucleotides long, except for barley 4.5 S rRNA which is 95 nucleotides in length (fig.3). The sequence of at least 90 nucleotides from the 3'-end was unambiguously determined by both enzymatic and chemical methods with [3'-32P]RNA. The sequences from the 5'-end to about position 80 were determined enzymatically using [5'-32P]RNA. There were about 50-80 nucleotide sequences overlapping end determinations. different 3'-terminal residue as pyrimidine C could not be read out from the autoradiograph with 3'-endlabeled RNA because the last fragment was $GAAC^{32}pCp$ in the lane of RNase B. cereus in the autoradiograph mapping (not shown).

From the determined nucleotide sequences of the chloroplast 4.5 S rRNAs it was proved that the sequences of 4.5 S rRNAs were strongly conserved among themselves (fig.3). For example, the highest homology between celery and Chinese chive, Chinese chive and dayflower is up to 95%. However, there is an additional phenomenon shown in fig.3, namely a 7-nucleotide sequence deletion from position 28 to 34 of barley 4.5 S rRNA. The sequence homology between barley and the others in fig.3 is only about 80% when the homology is estimated with the inclusion of the 7-nucleotide fragment. It is present in the 4.5 S rRNAs of dicotyledon tobacco [7], spinach [9] and tomato [12]. It is also present in the 4.5 S rRNAs of typical monocotyledon Chinese chive and dayflower. However, this 7-nucleotide fragment is absent in monocotyledon barley, wheat [6] and maize [8]. all of which are classed monocotyledon grasses. The absence of the 7-nucleotide fragment in the sequence of 4.5 S rRNA may be a feature of grasses. Therefore, we consider that the deletion of this fragment must have occurred after the evolutionary separation of monocotyledon grasses. It might play a particular structural or functional role in one group of ribosomes.

The nucleotide sequences of the four 4.5 S rRNAs were compared with that of the 3'-terminal region of E. coli 23 S rRNA, essentially according to the alignment of Edwards and Kössel [17], resulting in a homology of about 60%. This suggests that the gene of chloroplast 4.5 S rRNA might arise from the 3'-terminal region of the gene of prokaryotic 23 S rRNA. This lends support to the hypothesis of endogenesis.

The four 4.5 S rRNAs that we sequenced all have a free 5'-terminal hydroxyl. The property of having an unphosphorylated 5'-end is in accord with the general features of chloroplast 4.5 S rRNAs [1-12]. This suggests that 4.5 S rRNAs might differ in the post-transcription process from other RNAs in chloroplasts.

REFERENCES

- [1] Dyer, T.A. and Bowman, C.M. (1976) in: Genetics and Biogenesis of Chloroplasts and Mitochondria (Bücher, T. et al. eds) pp.645-651, North-Holland, Amsterdam.
- [2] Whitfeld, P.R. (1977) in: The Ribonucleic Acids (Stewart, P.R. and Letham, D.S. eds) 2nd edn, pp.297-332, Springer, Heidelberg.
- [3] Whitfeld, P.R., Leaver, C.J., Bottomley, W. and Atchison, B.A. (1978) Biochem. J. 175, 1103-1112.
- [4] Bowman, C.M. and Dyer, T.A. (1979) Biochem. J. 183, 605-613.

- [5] Hartley, M.R. (1979) Eur. J. Biochem. 96, 311-320.
- [6] Wildeman, A.G. and Nazar, R.N. (1980) J. Biol. Chem. 255, 11896-11900.
- [7] Takaiwa, F. and Sugiura, M. (1980) Nucleic Acids Res. 8, 4125-4129.
- [8] Edwards, K., Bedbrook, J., Dyer, T.A. and Kössel, H. (1981) Biochem. Int. 2, 533-538.
- [9] Kumagai, I., Pieler, T., Subramanian, A.R. and Erdmann, V.A. (1982) J. Biol. Chem. 257, 12924-12928.
- [10] Takaiwa, F., Kusuda, M. and Sugiura, M. (1982) Nucleic Acids Res. 10, 2257-2260.
- [11] Keus, R.J.A., Roovers, D.J., Dekker, A.F. and Groot, G.S.P. (1983) Nucleic Acids Res. 11, 3405-3410.
- [12] Cheng, Z.Q., Xiao, X. and Wang, E.S. (1986) Biochim. Biophys. Acta, in press.

- [13] Troitsky, A.V., Bobrova, V.K., Ponomarev, A.G. and Antonov, A.S. (1984) FEBS Lett. 176, 105-109.
- [14] Vournakis, J.N., Celantano, L., Finn, M., Lockard, R.E., Mitra, T., Pavlakis, G., Troutt, A., Van Den Berg, M. and Wurst, R.M. (1981) in: Gene Amplification and Analysis (Chirikjian, J.G. and Papas, T.S. eds) vol.2, pp.275-277, Elsevier/North-Holland, Amsterdam, New York.
- [15] Donis-Keller, H., Maxam, A.M. and Gilbert, W. (1977) Nucleic Acids Res. 4, 2527-2538.
- [16] Peattie, D.A. (1979) Proc. Natl. Acad. Sci. USA 76, 1760-1764.
- [17] Edwards, K. and Kössel, H. (1981) Nucleic Acids Res. 9, 2853-2869.